Journal of Organometallic Chemistry, 157 (1978) 153–162 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

HETEROGENEOUS CATALYSIS IN THE PRESENCE OF SALTS AND WITHOUT SOLVENT

I. ALCOHOLYSIS OF SILANES

J. BOYER, R.J.P. CORRIU^{*}, R. PERZ and C. REYE

Laboratoire des Organométalliques, Equipe de recherche associée au C.N.R.S. No. 554, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 -Montpellier Cédex (France)

(Received February 20th, 1978)

Summary

Alcoholysis of \geq Si—H bond is heterogeneously catalysed by salts. The reaction is highly selective and by choice of conditions, it is possible to prepare mono-, di- or tri-alkoxysilanes. A mechanism involving coordination of the salt anions to the silanes is proposed.

Alcoholysis of silanes has been much studied and several catalysts have been used: metal alkoxides [1], amines [2], metal halides [3,4] and transition metals, either in heterogeneous catalysis by copper [5], palladium or nickel [6] or in homogeneous catalysis by a metal complex [7-10]. We recently showed that the reaction can also be satisfactorily carried out in molten dodecylammonium propionate [11] but the miscibility of the products with this salt makes separation difficult. Thus we looked for less lipophilic salts so that the organic phase could be more easily separated.

Alcoholysis of hydrogenosilanes (α -NpPhSiH₂, α -NpSiH₃, Ph₂SiH₂, PhCH₃SiH₂, (n-Pent)₂SiH₂) with various types of alcohols or phenols (*m*-cresol, *n*-heptanol, menthol, allyl alcohol and undecynol) was found to give mono- or poly-alkoxy-silanes:

 $Ph_2SiH_2 + ROH \rightarrow Ph_2SiHOR, Ph_2Si(OR)_2(+H_2)$

 α -NpSiH₃ + ROH $\rightarrow \alpha$ -NpSiH₂OR, α -NpSiH(OR)₂, α -NpSi(OR)₃ + nH₂

Commercial potassium tartrate, potassium phthalate, SCNK, HCOOK, FK, FCs and CH_3COOCs were used (1 g per g of silane) and the results are shown in Tables 1 to 5. Yields were determined by GLC and confirmed by weighing the products after distillation.

Exp.	Salt	Alcohol	Conditions	Products		
number				α-NpSiH2OR (%)	α-NpSiH(OR)2 (%)	α-NpSi(OR) ₃ (%)
1	potassium	cresol (2 cq)	3 min/140°C	0	0	06
8	potassium	heptanol (3 eq)	90 min/140°C	0	ត្វស	0
3	SCNK	cresol (2 eq)	3 min/180°C	0	0	90
4	SCNK	heptanol (3 eq)	5 h/180°C	0	80	0
6	SCNK	menthol (2 eq)	3 h/180°C	30	0	0
9	HCO ₂ K	cresol (3 eq)	5 min/180°C	0	0	100
7	HCO2K	heptanol (3 eq)	1 h/180°C	0	0	100

TABLE 1 ALCOHOLYSIS OF α-NAPHTHYLSILANE (yield (%) by GLC)

-

-

٠

TABLE	2
-------	---

ALCOHOLYSIS OF DIPHENYLSILANE (yield (%) by GLC)

Exp.	Salt	Alcohol	Conditions	Products		
number				Ph ₂ SiHOR (%)	Ph ₂ Si(OR) ₂ (%)	
1	potassium tartrate	cresol (1 eq)	4 h/140°C	50	0	
2	potassium tartrate	cresol (2 eq)	4 h/140°C	40	20	
3	SCNK	cresol (2 eq)	7 min/180°C	0	100	
4	SCNK	heptanol (2 eq)	30 min/180°C	100	C	
5	SCNK	menthol (2 eq)	$4 h/180^{\circ}C$	0	0	
6	HCO ₂ K	cresol (2 eq)	15 min/180°C	0	100	
7	HCO ₂ K	heptanol (2 eq)	15 min/180°C	0	100	
8	HCO ₂ K	menthol (1 eq)	5 h/180°C	90	0	
9	HCO ₂ K	metnhol (2 eq)	5 h/180°C	20	80	
10	HCO ₂ K	metnhol (3 eq)	5 h/180°C	0	100	
11	FK	cresol (2 eq)	$4 \min/25^{\circ}C$	0	100	
12	FK	heptanol (2 eq)	10 min/180°C	0	100	
13	FK	menthol (3 eq)	30 min/180°C	0	100	
14	FLi	cresol (2 eq)	3 h/180°C	0	0	
15	potasssium phthalate	cresol (2 eq)	5 min/180°C	0	100	
16	potassium phthalate	heptanol (3 eq)	15 min/180°C	0	100	
17	potassium phthalate	menthol (1 eq)	30 min/180°C	90	0	
18	potassium phthalate	menthol (2 eq)	30 min/180°C	20	80	
19	potassium phthalate	menthol (3 eq)	20 min/180°C	0	100	

The results show that the extent of alcoholysis of silanes in the presence of salts is dependent upon several factors, including the nature of the reagents (silane and alcohol or phenol), the nature of the salt, the temperature, and the magnitude of the ratio [silane]/[alcohol]. Thus a reactivity sequence of α -NpSiH₃ Ph₂SiH₂ > PhMeSiH₂ > α -NpPhSiH₂ > (Pent)₂SiH₂ may be deduced from the following observations.

In the presence of SCNK, menthol gives 30% of monoalkoxysilane with α -NpSiH₃ (Table 1, exp. 5) whereas it does not react with Ph₂SiH₂ (Table 2,

TABLE 3 ALCOHOLYSIS OF PHENYLMETHYLSILANE (yield (%) by GLC)

Exp.	Salt	Alcohol	Conditions	Products	
number				PhMeSiHOR (%)	PhMeSi(OR) ₂ (%)
1	potassium tartrate	cresol (2 eq)	2.5 h/140°C	45	0
2	SCNK	cresol (2 eq)	2 h/180°C	5	95
3	SCNK	heptanol (1 eq)	18 h/180°C	0	60
4	HCO ₂ K	cresol (1 eq)	15 min/170°C	0	60
5	HCO ₂ K	heptanol (2 eq)	15 min/180°C	0	90
6	HCO ₂ K	menthol (2 eq)	6 h/180°C	40	60
7	FK	metnhol (2 eq)	1 h/180°C	15	85
8	potassium phthalate	menthol (1 eq)	1 h/160°C	80	0

Exp.	Salt	Alcohol	Conditions	Products		
numder				a-NpPhSi- (H)OR (%)	α-NpPhSi- (OR) ₂ (%)	
1	potassium tartrate	cresol (1 eq)	24 h/140°C	0	0	
2	potassium tartrate	menthol (1 eq)	24 h/140°C	0	0	
3	SCNK	cresol (1 eq)	3 h/180°C	95	0	
4	SCNK	heptanol (2 eq)	4 h/180°C	95	0	
5	SCNK	menthol (1 eq)	4 h/180°C	0	0	
6	HCOOK	cresol (2 eq)	15 min/180°C	0	95	
7	нсоок	heptanol (2 eq)	2 h/180°C	10	90	
8	нсоок	menthol (1 eq)	4 h/180°C	90	0	
9	FK	cresol (2 eq)	5 min/100°C	0	100	
10	FK	heptanol (2 eq)	15 min/180°C	10	90	
11	FK	menthol (1 eq)	$1 h/25^{\circ}C$	0	0	
12	FK	menthol (3 eq)	30 min/130°C	10	90	
13	potassium phthalate	cresol (2 eq)	20 min/180°C	0	100	
14	potassium phthalate	heptanol (2 eq)	15 min/180°C	10	90	
15	potassium phthalate	menthol (1 eq)	$4 h/120^{\circ}C$	90	0	
16	potassium phthalate	menthol (3 eq)	90 min/180°C	55	45	
17	FCs	menthol (1 eq)	1 h/25°C	100	0	
18	FCs	metnhol (1 eq)	1 h/80°C	30	70	
19	FCs	metnhol (1 eq)	1 h/180°C	0	100	
20	CH ₃ COOLi	heptanol (2 eq)	90 min/180°C	55	8	
21	сн ₃ соок	heptanol (2 eq)	90 min/180°C	50	43	
22	CH ₃ COOK	heptanol (2 eq)	15 min/180°C	35	0	
23	CH ₃ COOCs	heptanol (2 eq)	15 min/180°C	57	8	

TABLE 4

ALCOHOLYSIS OF α-NAPHTHYLPHENYLSILANE (yield (%) by GLC)

exp. 5). In the presence of HCO_2K , Ph_2SiH_2 reacts with menthol to give a greater amount of dialkoxysilane than does $PhCH_3SiH_2$ (Table 2, exp. 9 and Table 3, exp. 6). $PhCH_3SiH_2$ and α -NpPhSiH_2 undergo disubstitution by heptanol in the presence of HCO_2K . However, with the former the reaction is complete in 15 min (Table 3, exp. 5) whereas with the latter it takes 2 h (Table 4, exp. 7). With *m*-cresol on the other hand, in the presence of HCO_2K or potassium phthalate, α -NpPhSiH₂ reacts completely in 15 and 20 min, respectively (Table 4, exp. 6 and 13) whereas (Pent)_2SiH_2 takes 1 h to react in both cases (Table 5, exp. 1 and 2).

The reactivities of the hydroxy compounds, fall in the order: m-cresol >

TABLE 5

	ALCOHOLYSIS OF	DIPENTYLSILANE	(vield (%) by GLC
--	----------------	----------------	-----------	----------

Exp. number	Salt	Alcohol	Conditions	(Pent) ₂ SiHOR (%)	(Pent) ₂ Si- (OR) ₂ (%)
1	HCO ₂ K	cresol (2 eq)	1 h/180°C	0	90
2	potassium phthalate	cresol (2 eq)	1 h/180°C	0	80
3	potassium phthalate	heptanol (2 eq)	1 h/180°C	0	80
4	potassium phthalate	menthol (2 eq)	7 h/180°C	70	0

n-heptanol > menthol. With Ph_2SiH_2 , for example, in the presence of SCNK at 180°C disubstitution by *m*-cresol is complete within 7 min, whereas monosubstitution by heptanol takes 30 min and menthol does not react at all (Table 2, exp. 3, 4, 5). The high reactivity of *m*-cresol is unusual for in homogeneous catalysis, phenols react only very slowly in the presence of rhodium catalysts [10] and not at all in the presence of dicobaltoctacarbonyl [8].

In our salt media the reactivity of menthol and m-cresol is inverted; on the basis of the observed order of reactivity, it would appear that the ease of reaction of these compounds is primarily determined by steric effects.

Both, the rate and the nature of the products depend markedly on the salt used as catalyst. Thus with potassium tartrate reaction of cresol with α -NpSiH₃, Ph_2SiH_2 and $PhCH_3SiH_2$ occurs, but with α -NpPhSiH₂ no reaction is observed (Tables 1, 2, 3, 4 exp. 1). SCNK is more effective; it not only brings about monosubstitution of α -NpPhSiH₂ (Table 4, exp. 3) but disubstitution of Ph₂SiH₂ (Table 2, exp. 3) and PhCH₃SiH₂ (Table 3, exp. 2) and even trisubstitution of α -NpSiH₃ (Table 1, exp. 3). With heptanol, disubstitution of dihydrosilanes requires the use of HCO₂K (Table 2, exp. 7, Table 3, exp. 5, Table 4, exp. 7). Disubstitution by menthol (the least reactive alcohol in our study) occurs only partially (45%) with potassium phthalate, but extensively (90%) with FK (Tables 4, exp. 12, 16). FCs is the most efficient salt; indeed monosubstitution of α -NpPhSiH₂ by menthol at room temperature (25°C) can be brought about only with this salt (Table 4, exp. 17). The relative efficiency of the salts, according to our studies is: potassium tartrate < SCNK < HCO₂K < potassium phthalate <FK < FCs. Temperature also can influence the extent of reaction; thus α -NpPhSiH₂ in the presence of FCs undergoes monosubstitution exclusively at 25° C. disubstitution at 180°C and a mixture of the two at 80°C (Table 4, exp. 17, 18, 19).

Interestingly the state of the salt (molten or solid) has no specific effect on the rate of reaction: when α -NpPhSiH₂ and menthol were heated together for a constant period (3 h) over a wide range of temperature above and below the

Fig. 1. α -NpPhSiH₂ + menthol/HCO₂K (m.p. 167°C) 3 h at different temperatures. Product: α -naphthylphenylmenthoxysilane.

Fig. 2. $Ph_2SiH_2 + menthol/HCO_2K + SCNK$ (m.p. $100^{\circ}C$) 5 h at different temperatures. Product: diphenyl-menthoxysilane.

melting point of the added salt (HCO₂K, m.p. 167°C) the yield of α -naphthylphenylmenthoxysilane was found to vary linearly with temperature (Fig. 1). Likewise when Ph₂SiH₂ was similarly treated, the rate was seen to depend only on the reaction temperature (Fig. 2) and not at all on the state of the added salt.

Selectivity

For synthetic purposes, this new method appears to be at least as selective as homogeneous catalysis [7,10] and more selective than heterogeneous catalysis [5]. It seems invariably possible to establish experimental conditions to obtain either mono- or di-alkoxysilanes exclusively from any alcohol and silane, by changing (a) the salt or (b) the temperature and/or [silane]/[alcohol] ratio.

For example, by changing the ratio $[Ph_2SiH_2]/[menthol]$ mono- or di-substitution can be obtained in the presence of either HCO₂K or potassium phthalate (Table 2, exp. 8, 9, 10, 17, 18, 19) Monosubstitution of α -NpPhSiH₂ and Ph₂SiH₂ by heptanol takes place in the presence of SCNK (Tables 2 and 4, exp. 4) and disubstitution in the presence of HCO₂K, FK and potassium pthalate (Table 2, exp. 7, 12, 16; Table 4, exp. 7, 10, 14). With the same salts, α -NpSiH₃ undergoes alternatively di- or tri-substitution by heptanol (Table 1, exp. 4, 7). Monosubstitution of α -NpPhSiH₂ by menthol occurs with HCO₂K at 180°C, with FCs at 25°C (Table 4, exp. 8, 17) and disubstitution with FK and FCs at 180°C (Table 4, exp. 12, 19).

Selectivity is even more significant in the reactions of ethylenic alcohols with silanes, for under our conditions alkoxysilanes are formed without affecting the double bond (Table 6). This is in marked contrast with the results obtained by homogeneous catalysis [10] where both functional group react.

$$R_{2}SiH_{2} + CH_{2} = CH(CH_{2})_{n}OH - \frac{(PPh_{3})_{3}RhCl}{benzene} R_{2}Si - (CH_{2})_{n}OH$$

Mechanism

The difference in the catalytic effect of the alkalimetal fluorides is very substantial, for when Ph_2SiH_2 and *m*-cresol are heated together at 180°C for 3 h

TABLE 6

ALCOHOLYSIS OF	FETHYLENIC	ALCOHOLS	(yield	(%) by	GLC)
----------------	------------	----------	--------	--------	------

Exp. number ^a	Salt	Alcohol	Silane	Conditions	Product	
					SiHOR (%)	Si(OR) ₂ (%)
1	FK	CH ₂ =CH(CH ₂) ₉ OH	Ph ₂ SiH ₂	3 h/100°C	60	0
2	FCs	$CH_2 = CH(CH_2)_9OH$	Ph_2SiH_2	20 min/25°C	0	100
3	FCs	CH2=CHCH2OH	α -NpShSiH ₂	30 min/25°C	0	100

^a $R = -(CH_2)_9CH=CH_2$ (exp. 1,2); $R = -CH_2CH=CH_2$ (exp. 3).

in the presence of FLi no reaction is observed. Yet in the presence of FK reaction is instantaneous even at 25°C (Table 2, exp. 11, 14). At the same time, FK fails to bring about reaction between α -NpPhSiH₂ and menthol at room temperature. whereas reaction is quantitative in the presence of FCs under identical conditions (Table 4, exp. 11, 17). The activity of the fluorides thus follows the order: $FLi \ll FK \ll FCs$, i.e. it increases with increasing ionic character. We believe, that the role of the salt in these reactions is to activate the silicon atom by anionic coordination to form a pentacoordinated silicon atom (I). Coordination of this anion causes delocalisation of the Si-H electron pair and the reaction then takes place by nucleophilic attack of the alcohol molecule at the silicon atom (II). Such extension of coordination of a silicon atom is well

 (Π)

known [12,13,14] and a similar mechanism was proposed for alcoholysis in the presence of rhodium catalysts [10].

Experimental

The NMR spectra were recorded on Varian A60 and T60 spectrometers. The chemical shifts are given in ppm relative to TMS. After the δ , the number of protons (nH) and the nature of the signals (s, singlet; d, doublet; t, triplet; q, quadruplet; m. multiplet) are indicated. The IR spectra were recorded on a Perkin–Elmer 257 spectrophotometer. Analytical gas chromatography (GLC) was carried out on a Girdel 75FH2 using a column packed with 5 or 10% SE 30.

Material

Hydrosilanes were prepared by standard methods. Salts and alcohols were obtained from commercial sources.

General technique

All the alcoholysis reactions were carried out under nitrogen. The following is given as an example: 2.76 g of Ph₂SiH₂ (0.015 mol) 3.56 g of *m*-cresol (0.030 mol) were added together with 3 g of SCNK to the reaction flask under nitrogen. The temperature was maintained at 180°C by use of an oil bath. The mixture was stirred until the evolution of gas stopped (7 min). The salt was filtered off from the organic layer, and the latter was analysed by gas chromatography. Ph₂Si(OCr)₂ (m.p. 81°C) was recrystallized from pentane and identified by its NMR and IR spectra, and by elemental analysis.

Product analysis

The yield were determined by GLC and were based on the silane taken. Products

were isolated by distillation or recrystallization, and identified by their NMR and IR spectra and by elemental analysis.

Alcoholysis of α-naphthylsilane. α-Naphthylmenthoxysilane: b.p. 160° C/0.2 mmHg. NMR (δ , ppm): 7.7 (7H, m), 5.3 (2H, s), 3.5 (1H, m), 1.5 (18H, m). IR (cm⁻¹): ν (Si–H) 2140. Found: C, 75.97; H, 8.99; Si, 8.68. C₂₀H₂₈OSi calcd.: C, 75.86; H, 9.03; Si, 8.99%.

α-Naphthyldiheptanoxysilane: b.p. 195° C/0.6 mmHg. NMR (δ, ppm): 7.7 (7H, m), 5.25 (1H, s), 3.8 (4H, t), 1.3 (26H, m). IR (cm⁻¹): ν (Si–H) 2130. Found: C, 74.81; H, 9.90; Si, 7.63. C₂₄H₃₈O₂Si calcd.: C, 74.66; H, 9.84; Si, 7.25%.

α-Naphthyltricresoxysilane: m.p. 60° C (pentane). NMR (δ, ppm): 7.6 (19H, m), 2.2 (3H, s), 1.3 (9H, s). Found: C, 78.21; H, 5.80; Si, 6.04. C₃₁H₂₈O₃Si calcd.: C, 78.15; H, 5.88; Si, 5.88%.

 α -Naphthyltriheptanoxysilane: b.p. 210°C/0.1 mmHg. NMR (δ , ppm): 7.7 (7H, m), 3.8 (6H, t), 1.4 (39H, m). Found: C, 74.14; H, 10.26; Si, 5.67. C₃₁H₅₂O₃Si calcd.: C, 74.44; H, 10.40; Si, 5.60%.

Alcoholysis of diphenylsilane. Diphenyldicresoxysilane: m.p. $81^{\circ}C$ (pentane). NMR (δ , ppm): 7.3 (10H, m), 6.65 (8H, m), 2.14 (6H, s). Found: C, 78.44; H, 6.18; Si, 7.41. C₂₆H₂₄O₂Si calcd.: C, 78.78; H, 6.06; Si, 7.07%.

Diphenylcresoxysilane: b.p. 180° C/15 mmHg. NMR (δ , ppm): 7.5 (10H, m), 6.67 (8H, m), 5.65 (1H, s), 2.16 (3H, s). IR (cm⁻¹): ν (Si–H) 2130. Found: C, 78.49; H, 6.43; Si, 9.85. C₁₉H₁₈OSi calcd.: C, 78.62; H, 6.20; Si, 9.65%.

Diphenylheptanoxysilane: b.p. 190°C/10 mmHg. NMR (δ , ppm): 7.38 (10H, m), 5.35 (1H, s), 3.7 (2H, t), 1.25 (13H, m). IR (cm⁻¹): ν (Si–H) 2130. Found: C, 76.75; H, 8.79; Si, 9.45. C₁₉H₂₆OSi calcd.: C, 76.50; H, 8.70; Si, 9.40%.

Diphenyldiheptanoxysilane: b.p. 207°C/0.7 mmHg. NMR (δ , ppm): 7.4 (10H, m), 3.7 (4H, t), 1.2 (26H, m). Found: C, 75.48; H, 9.95; Si, 6.47. C₂₆H₃₆O₂Si calcd.: C, 75.80; H, 9.70; Si, 6.80%.

Diphenylmenthoxysilane: b.p. 200°C/10 mmHg. NMR (δ , ppm): 7.4 (10H, m), 5.4 (1H, s), 3.5 (1H, m), 0.9 (18H, m). IR (cm⁻¹): ν (Si–H) 2130. Found: C, 77.60; H, 8.69; Si, 8.82. C₂₂H₃₀OSi calcd.: C, 78.10; H, 8.30; Si, 8.80%.

Diphenyldimenthoxysilane: b.p. 260° C/1 mmHg. NMR (δ , ppm): 7.5 (10H, m), 3.45 (2H, m), 1.3 (38H, m). Found: C, 77.48; H, 9.44; Si, 6.09. C₃₂H₄₈O₂Si calcd.: C, 77.98; H, 9.82; Si, 5.69%.

Diphenyldiundecylenoxysilane: b.p. 190° C/0.5 mmHg. NMR (δ , ppm): 7.33 (10H, m), 5.1 (6H, m), 3.7 (4H, t), 1.42 (32H, m). Found: C, 78.50; H, 9.53; Si, 5.36. C₃₄H₅₂O₂Si calcd.: C, 78.46; H, 10.00; Si, 5.38%.

Diphenylundecylenoxysilane: b.p. 160° C/1 mmHg. NMR (δ , ppm): 7.4 (10H, m), 5.32 (1H, s), 5 (2H, d), 4.75 (1, m), 3.7 (2H, t), 1.4 (16H, m). IR (cm⁻¹): ν (Si-H) 2130. Found: C, 80.32; H, 8.18; Si, 7.30. C₂₃H₃₂OSi calcd.: C, 80.41; H, 8.24; Si, 7.21%.

Alcoholysis of phenylmethylsilane. Phenylmethyldicresoxysilane: b.p. $175^{\circ}C/15 \text{ mmHg}$. NMR (δ , ppm): 7.2 (13H, m), 2.2 (6H, s), 0.5 (3H, s). Found: C, 75.00; H, 6.60; Si, 8.40. C₂₁H₂₂O₂Si calcd.: C, 74.75; H, 6.54; Si, 8.90%.

Phenylmethyldiheptanoxysilane: b.p. 70° C/0.1 mmHg. NMR (δ , ppm): 7.4 (5H, m), 3.6 (4H, t), 1.2 (26H, m), 0.25 (3H, s). Found: C, 71.17; H, 11.17; Si, 8.23. C₂₁H₃₈O₂Si calcd.: C, 71.02; H, 11.10; Si, 7.74%.

Phenylmethylcresoxysilane: b.p. 130° C/15 mmHg. NMR (δ , ppm): 0.5 (3H, m), 2.3 (3H, s), 7.1 (9H, m). IR (cm⁻¹): ν (Si-H) 2130. Found: C, 73.63; H, 7.04;

Si, 12.29. C₁₄H₁₆OSi calcd.: C, 73.68; H, 6.60; Si, 12.28%.

Phenylmethylmenthoxysilane: b.p. 160° C/15 mmHg. NMR (δ , ppm): 7.4 (5H, m), 5.1 (1H, s), 3.4 (1H, in), 1.3 (21H, m). IR (cm⁻¹): ν (Si–H) 2130. Found: C, 74.23; H, 10.37; Si, 10.06. C₁₇H₂₈OSi calcd.: C, 73.9; H, 10.14; Si, 10.14%.

Phenylmethyldimenthoxysilane: b.p. 120° C/0.1 mmHg. NMR (δ , ppm): 7.5 (5H, m), 3.5 (2H, m), 1.5 (36H, m), 0.4 (3H). Found: C, 75.02; H, 10.70; Si, 6.74. C₂₇H₄₆O₂Si calcd.: C, 75.34; H, 10.69; Si, 6.50%.

Alcoholysis of α-naphthylphenylsilane. α-Naphthylphenylcresoxysilane: b.p. 195°C/0.5 mmHg. NMR (δ , ppm): 7.3 (16H, m), 6.03 (1H, s), 2.14 (3H, s). IR (cm⁻¹): ν (Si-H) 2130. Found: C, 80.73; H, 5.92; Si, 7.98. C₂₃H₂₀OSi calcd.: C, 81.18; H, 5.89; Si, 8.24%.

α-Naphthylphenylheptanoxysilane: b.p. 180° C/0.3 mmHg. NMR (δ, ppm): 7.66 (12H, m), 5.63 (1H, s), 3.73 (2H, m), 1.25 (13H, m). IR (cm⁻¹): ν(Si-H) 2130. Found: C, 79.10; H, 7.97; Si, 8.15. C₂₃H₂₈OSi calcd.: C, 79.31; H, 8.04; Si, 8.04%.

α-Naphthylphenyldicresoxysilane: m.p. 77°C (pentane). NMR (δ , ppm): 7.4 (20H, m), 2.2 (6H, s). Found: C, 80.32; H, 5.88; Si, 6.46. C₂₀H₂₆O₂Si calcd.: C, 80.71; H, 5.83; Si, 6.28%.

α-Naphthylphenyldiheptanoxysilane: b.p. 205° C/0.3 mmHg. NMR (δ, ppm): 1.4 (26H, m), 3.74 (4H, m), 7.72 (12H, m). Found: C, 77.86; H, 9.15; Si, 6.07. C₃₀H₂₆O₂Si calcd.: C, 77.82; H, 8.90; Si, 6.03%.

α-Naphthylphenyldimenthoxysilane: b.p. 195° C/0.04 mmHg. NMR (δ, ppm): 7.6 (12H, m), 3.5 (2H, m), 1.5 (36H, m). Found: C, 78.99; H, 9.03; Si, 5.19. C₃₆H_{so}O₂Si calcd.: C, 79.7; H, 9.22; Si, 5.16%.

 α -Naphthylphenyldiallyloxysilane: b.p. 193°C/2 mmHg. NMR (δ , ppm): 7.65 (12H, m), 5.8 (2H, m), 5.1 (4H, m), 4.25 (4H, d). Found: C, 76.11; H, 6.17; Si, 8.55. C₂₂H₂₂O₂Si calcd.: C, 76.30; H, 6.35; Si, 8.09%.

Alcoholysis of dipentylsilane. Dipentyldicresoxysilane: b.p. $102^{\circ}C/0.1$ mmHg. NMR (δ , ppm): 7 (8H, m), 2.4 (6H, s), 1.1 (22H, m). Found: C, 75.37; H, 9.64; Si, 7.38. C₂₄H₃₆O₂Si calcd.: C, 75.00; H, 9.37; Si, 7.29%.

Dipentylmenthoxysilane: b.p. 70°C/0.1 mmHg. NMR (δ , ppm): 4.58 (1H, s), 3.5 (1H, m), 1.18 (40H, m). IR (cm⁻¹): ν (Si-H) 2130 cm⁻¹. Found: C, 73.45; H, 12.82; Si, 8.79. C₂₀H₄₂OSi calcd.: C, 73.61; H, 12.88; Si, 8.58%.

Dipentyldiheptanoxysilane: b.p. 90° C/0.1 mmHg. NMR (δ , ppm): 3.6 (4H, m), 1.1 (48H, m). Found: C, 71.52; H, 13.47; Si, 6.80. C₂₄H₅₂O₂Si calcd.: C, 72.00; H, 13.00; Si, 7.00%.

References

- W.H. Nebergall, J. Amer. Chem. Soc., 72 (1950) 4702; H. Gilman and G.N.R. Smart, J. Org. Chem., 19 (1954) 441; B.N. Dolgov, N.P. Kharitonov and M.G. Vorontov, Zh. Obshch. Khim., 24 (1954) 1178; Chem. Abstr., 49 (1955) 12 275; B.N. Dolgov, N.P. Kharitonov and T.V. Tsukshverdt, Zh. Obshch. Khim., 28 (1958) 2714; Chem. Abstr., (1959) 9037 h.
- 2 H. Gilman, J. Amer. Chem. Soc., 77 (1955) 1287.
- 3 I.S. Akhrem, M. Deneux and M.E. Volpin, Izv. Akad. Nauk SSSR, (1973) 932; Chem. Abstr., 79 (1973) 53442 h; K.A. Andrianov and L.M. Tartakovskaya, Izv. Akad. Nauk SSSR, (1972) 2631; Chem. Abstr., 78 (1973) 58515; M. Deneux, I.C. Akhrem, D.V. Avetissian, E.I. Myssof and M.E. Volpin, Bull. Soc. Chim. Fr., (1973) 2638.
- 4 B.N. Dolgov, Yu.I. Khudobin and N.P. Kharitonov, Izv. Akad. Nauk SSSR, (1958) 113; Chem, Abstr.,

162

52 (1958) 11769; Izv. Akad. Nauk SSSR, (1959) 1238; Chem. Abstr., 54 (1960) 1381 d; B.N. Dolgov N.P. Kharitonov, N.L. Glushkova and Yu.I. Khudobin, Zh. Obshch. Khim., 28 (1958) 2710; Chem. Abstr., 53 (1959) 9037.

- 5 W.S. Miller, J.S. Peake and W.H. Nebergall, J. Amer. Chem. Soc., 79 (1957) 5604; B. Sternbach and A.G. MacDiarmid, J. Amer. Chem. Soc., 81 (1959) 5109; V.O. Reikhsfel'd and V.A. Prokhorova, Zh. Obshch, Khim., 31 (1961) 2613; Chem. Abstr., 56 (1962) 11609 h.
- 6 L.H. Sommer and J.E. Lyons, J. Amer. Chem. Soc., 89 (1967) 1521; 91 (1969) 7061.
- 7 I. Ojima, T. Kogure, M. Nihonyanagi, H. Kono and S. Inaba, Chem. Lett., (1973) 501.
- 8 A.J. Chalk, Chem. Commun., (1970) 847.
- 9 N.J. Archer, R.N. Haszeldine and R.V. Parish, Chem. Commun., (1971) 524.
- 10 R.J.P. Corriu and J.J.E. Moreau, J. Organometal. Chem., 114 (1976) 135; 127 (1977) 7.
- 11 J. Boyer, R.J.P. Corriu, R. Perz and C. Reye, J. Organometal. Chem., 145 (1978) 131.
- 12 R. Corriu and M. Henner, J. Organometal. Chem., 74 (1974) 1.
- 13 R.E. Vasylishen, G.S. Birdi and A.F. Jansen, Inorg. Chem., 15 (1976) 3054.
- 14 D.P. Graddon and B.A. Rana, J. Organometal. Chem., 136 (1977) 315.
- 15 R.J.P. Corriu, F. Larcher and G. Royo, J. Organometal. Chem., 129 (1977) 299.